Context-Sensitive Dynamic Partial Order Reduction
نویسندگان
چکیده
Dynamic Partial Order Reduction (DPOR) is a powerful technique used in verification and testing to reduce the number of equivalent executions explored. Two executions are equivalent if they can be obtained from each other by swapping adjacent, non-conflicting (independent) execution steps. Existing DPOR algorithms rely on a notion of independence that is context-insensitive, i.e., the execution steps must be independent in all contexts. In practice, independence is often proved by just checking no execution step writes on a shared variable. We present context-sensitive DPOR, an extension of DPOR that uses context-sensitive independence, where two steps might be independent only in the particular context explored. We show theoretically and experimentally how context-sensitive DPOR can achieve exponential gains.
منابع مشابه
CAMAC: a context-aware mandatory access control model
Mandatory access control models have traditionally been employed as a robust security mechanism in multilevel security environments such as military domains. In traditional mandatory models, the security classes associated with entities are context-insensitive. However, context-sensitivity of security classes and flexibility of access control mechanisms may be required especially in pervasive c...
متن کاملA context-sensitive dynamic role-based access control model for pervasive computing environments
Resources and services are accessible in pervasive computing environments from anywhere and at any time. Also, due to ever-changing nature of such environments, the identity of users is unknown. However, users must be able to access the required resources based on their contexts. These and other similar complexities necessitate dynamic and context-aware access control models for such environmen...
متن کاملCartesian Partial-Order Reduction
Verifying concurrent programs is challenging since the number of thread interleavings that need to be explored can be huge even for moderate programs. We present a cartesian semantics that reduces the amount of nondeterminism in concurrent programs by delaying unnecessary context switches. Using this semantics, we construct a novel dynamic partial-order reduction algorithm. The cartesian semant...
متن کاملEfficient Stateful Dynamic Partial Order Reduction
In applying stateless model checking methods to realistic multithreaded programs, we find that stateless search methods are ineffective in practice, even with dynamic partial order reduction (DPOR) enabled. To solve the inefficiency of stateless runtime model checking, this paper makes two related contributions. The first contribution is a novel and conservative light-weight method for storing ...
متن کاملPartial-Order Reduction for Context-Bounded State Exploration
Iterative context-bounding is a technique for performing prioritized search of the state-space of multithreaded programs. A context switch occurs in a concurrent execution when a thread temporarily stops and a different thread resumes. Iterative context-bounding gives priority to executions with fewer context switches during state-space search, exploring for a given context-bound c only those e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017